

INFLUENCE OF AMMONIA ADDITION ON THE DEVELOPMENT OF MICROBIAL FLOCS ON Litopenaeus vannamei BFT NURSERY PHASE

Dariano Krummenauer, André Freitas, Carlos G. Gaona, Luis H. Poersch & Wilson Wasielesky Jr.

Rio Grande, Brazil

MARINE STATION AQUACULTURE

BFT SYSTEM

NURSERY PHASE

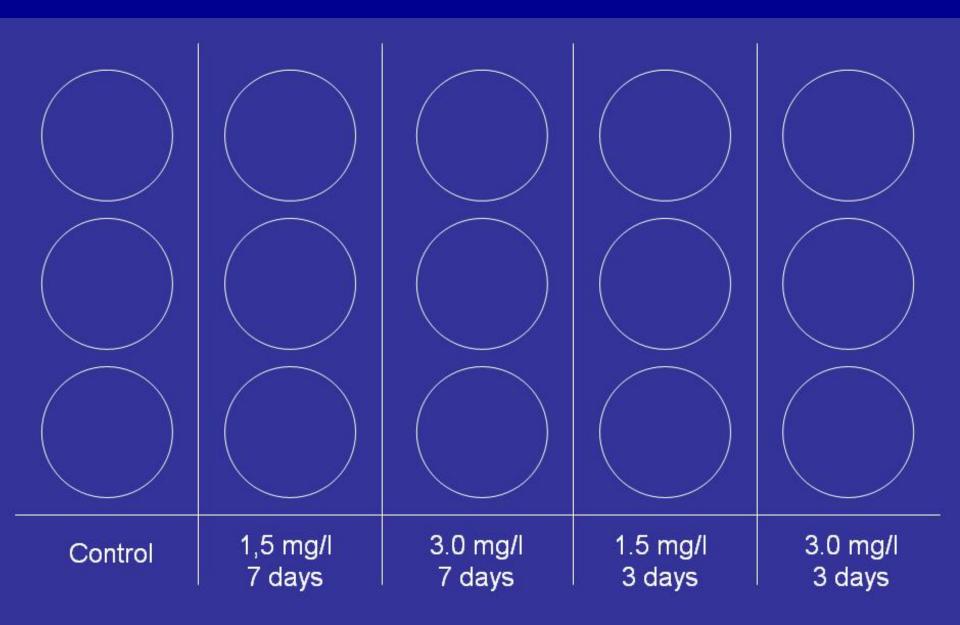
✓ Nurseries have been used as a biosecurity measure to mitigate losses caused by diseases

✓ The integration of an intermediate nursery phase has also been found to improve efficiency of the BFT system

BIOFLOC FORMATION

√ There is a gap between the beginning of shrimp production and biofloc formation.

√ The early biofloc formation can improved growth rates and survival.

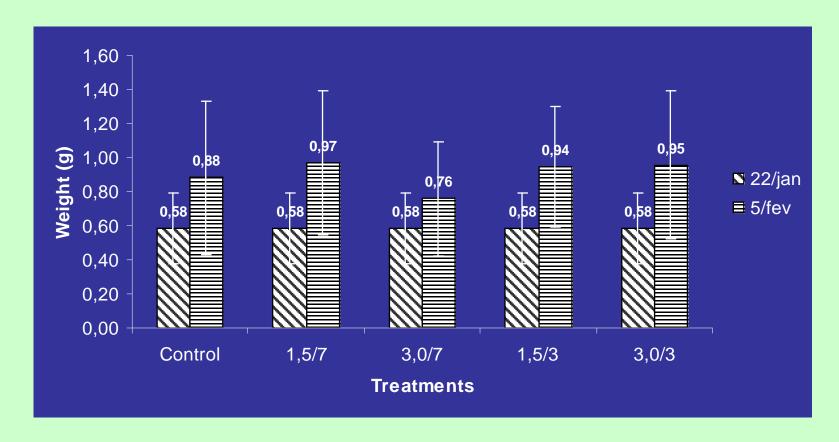

OBJETIVE

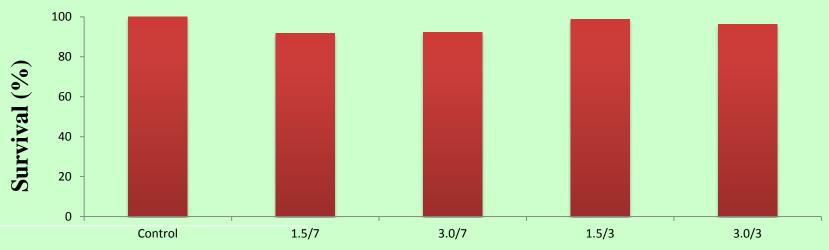
The present study aimed to evaluate the influence of the addition of ammonia to accelerate the biofloc formation in Litopenaeus vannamei BFT nursery phase

PRELIMINARY TEST

- ✓ Location of Study:
- ✓ Marine Station of Aquaculture
- ✓ Institute of Oceanography, Federal University of Rio Grande, RS, Brazil

✓ Ammonium chloride was added in two different concentrations (1.5 and 3.0 mg/l) and two different frequencies (3 and 7 days).


✓ Ammonia was measured daily and completed according to each treatment.


✓ Molasses was added in a rate of 6/1 (Avnimelech, 1999 and Ebeling et al. 2006)

RESULTS

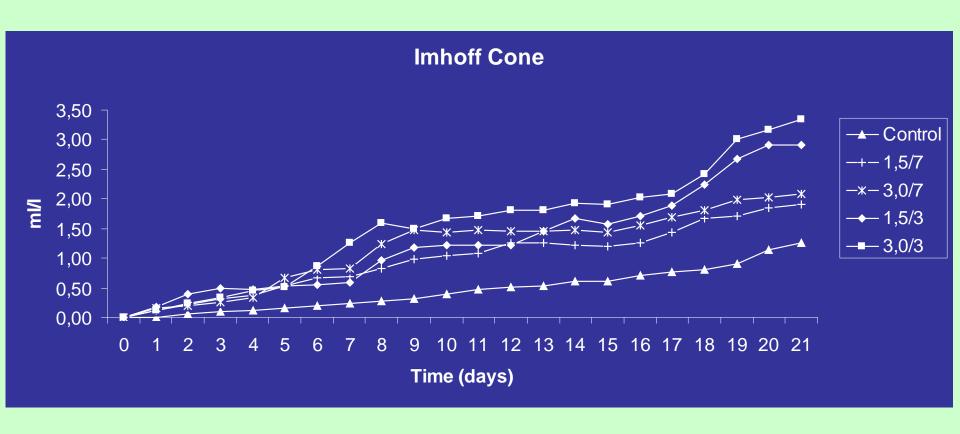

	Control	1.5/7	3.0/7	1.5/3	3.0/3
Temperature (AM)	21.9 ± 1.05	22.0 ± 0.90	20.0 ± 0.92	22.1 ± 1.05	22.2 ± 1.02
Temperature (PM)	29.2 ± 2.50	29.3 ± 2.68	28.6 ± 4.19	29.1 ± 2.54	29.7 ± 2.73
D.O. (AM)	5.9 ± 0.27	5.9 ± 0.32	5.9 ± 0.29	5.9 ± 0.33	5.9 ± 0.33
D.O. (PM)	5.5 ± 0.24	5.4 ± 0.25	5.2 ± 0.54	5.4 ± 0.25	5.3 ± 0.26
pH (AM)	8.25 ± 0.09	8.18 ± 0.10	8.14 ± 0.13	8.16 ± 0.11	8.11 ± 0.13
pH (PM)	8.51 ± 0.33	8.42 ± 0.38	8.06 ± 0.80	8.39 ± 0.32	8.26 ± 0.30
Salinity	31.1 ± 1.10	31.1 ± 1.14	32.9 ± 1.23	33.3 ± 0.89	33.3 ± 1.00
Survival	100%	91,74%	92,27%	98,78%	96,33%

Table 1: Mean \pm Standart Deviation. Data obtained twice a day, during the Morning (AM) and Afternoon (PM)

RESULTS

CONCLUSION

✓ The addition of ammonia in the early stages
of the culture improved the biofloc formation.

✓ The tested ammonia concentration did not affect *L. vannamei* growth and survival.

Greenhouse

- √ 9 Raceways 35 m²
- √ 3 treatments 3 replicates
- ✓ Stocking density: 3000 shrimps.m⁻²
- ✓ Time: 7 days (pre fertilization)
- √ Time: 30 days (nursery period)
- √ L. vannamei post larvae (0.03 g)

✓ Treatments:

- √ T1 addition of 0.5 mg/L of Ammonium chloride daily;
- √ T2 addition of 3.0 mg/L of Ammonium chloride daily
- √ T3 Control (without addition of Ammonium chloride)

PRE-FERTILIZATION

- ✓ The addition of ammonium chloride was performed every day;
- √ Keeping the measured concentrations

(0.5 and 3.0 mg/L)

After Stocking

✓ Fertilization based on Avnimelech (1999) and Ebeling *et al.* (2006)

- ✓ Feed 40% CP (0.4 1.2 mm, Guabi®)
- ✓ Feeding rate was based on Jory et al. (2001)
- ✓ Belt feeder (12 hours)
- √ 10% of the feed was distributed in circular feeding trays


✓ pH, temperature, dissolved oxygen and salinity were measured daily

- ✓ Analysis of ammonia, nitrite and nitrate every three days;
- ✓ Shrimps were sampled weekly to check growth;
- ✓ Counting total number of shrimps in the end of the experiment to determine the survival;
- ✓ Results were analyzed by oneway ANOVA (α =0.05)

Biofloc control:

- √ Total Suspended Solids (TSS)
- ✓ Bioflocs volume (Imhoff cones) (Three times / week)

ARTIFICIAL SUBSTRATE:

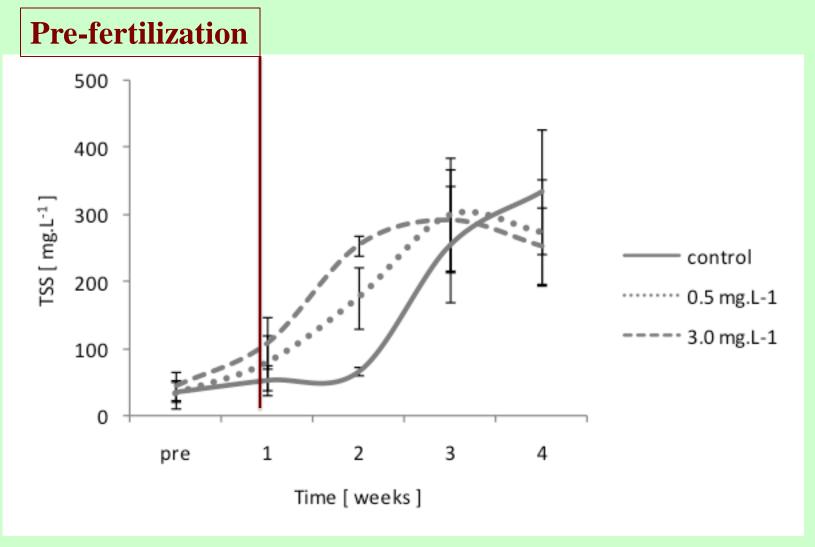
√ 200% of surface area

MULTI-STRAIN COMMERCIAL PROBIOTIC

Water

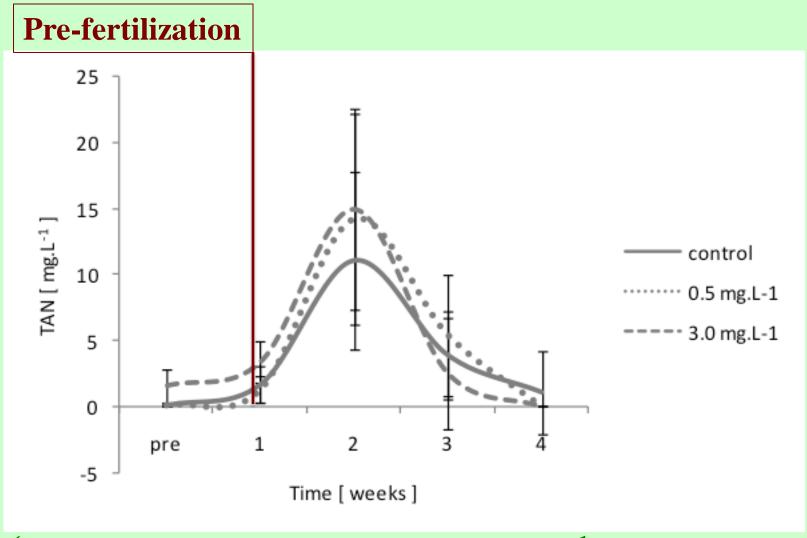
- ✓ 0.5 ppm /week
- ✓ Distribute the mixture in several locations around the tank.

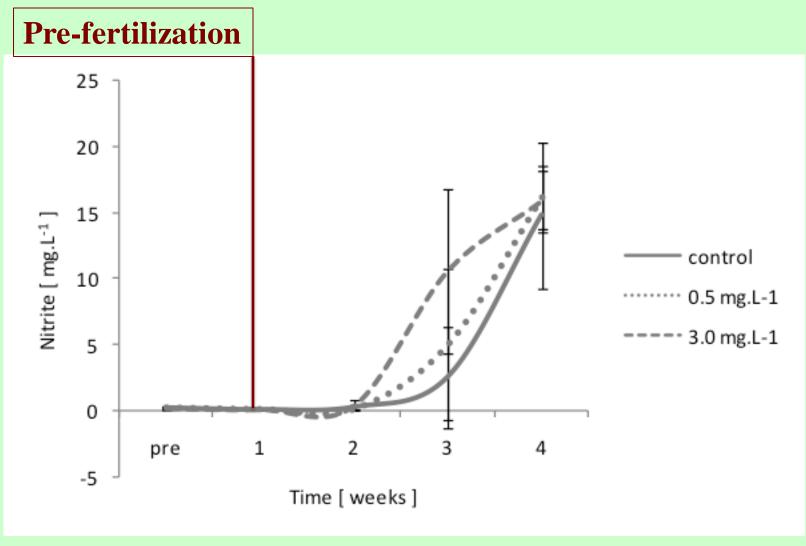
Feed


- √ 3 g/kg diet
- ✓ Mix with the feed and let dry
- ✓ Feed was distributed in several locations around the tank.

Parameters	Control	0.5 mg NH ₄	3.0 mg NH ₄
Temperature (°C)	26. 92± 1.46	26.90 ± 1.45	26.63 ± 1.49
DO (mg.L ⁻¹)	5.63 ± 0.75	5.86 ± 0.71	5.81 ± 0.72
рН	7.87 ± 0.16	7.95 ± 0.17	7.91 ± 0.17
Salinity	18.56 ± 1.04	18.94 ± 0.9	19.09 ± 0.68
TSS (mg.L ⁻¹)	149.33 ± 44.93	172.80 ± 54.29	190.67 ± 42.04
Turbidity (NTU)	83.65 ± 41.96	83.52 ± 15.91	79.16 ± 24.48
Alkalinity (mg CaCO3.L ⁻¹)	260.61 ± 18.30	268.4 ± 12.38	261.22 ± 15.23

- ✓ No significant differences between treatments
- ✓ Remains in optimal range for *L. vannamei*


BIOFLOC DEVELOPMENT


✓ Better formation in 0.5 and 3.0 mg L⁻¹

Parameters	Control	0.5 mg NH_4	3.0 mg NH_4
TAN (mg.L ⁻¹)	3.54 ± 2.93	4.20 ± 2.74	4.49 ± 2.93
Nitrite (mg.L ⁻¹)	3.54 ± 1.53	4.36 ± 1.67	5.42 ± 1.81
Nitrate (mg.L ⁻¹)	4.19 ± 0.82	4.06 ± 0.82	4.25 ± 0.85
Phosphate (mg.L ⁻¹)	0.23 ± 0.17	0.21 ± 0.17	0.22 ± 0.15

✓ No significant differences between treatments

 \checkmark Higher values in 0.5 and 3.0 mg L ⁻¹

✓ Higher values in 0.5 and 3.0 mg L^{-1}

Parameters	Control	0.5 mg NH_4	3.0 mg NH_4
Initial Weight (g)	0.022 ± 0.017	0.022 ± 0.017	0.022 ± 0.017
Final Weight (g)	0.793 ± 0.301	0.507 ± 0.207	0.468 ± 0.218
Survival (%)	50.63 ± 19.83	77.03 ± 13.41	71.92 ± 2.44
SGR (%)	11.79 ± 1.23	10.41 ± 0.68	10.19 ± 0.20
FCR	1.83 ± 0.43	1.61 ± 0.36	1.78 ± 0.29
Final Biomass (kg)	35.68 ± 8.29	39.46 ± 8.53	35.08 ± 4.97
Prod (kg.m ⁻²)	1.13 ± 0.26	1.25 ± 0.27	1.11 ± 0.16

✓ No significant differences between treatments in growth parameters.

Parameters	Control	0.5 mg NH_4	3.0 mg NH_4
Initial Weight (g)	0.022 ± 0.017	0.022 ± 0.017	0.022 ± 0.017
Final Weight (g)	0.793 ± 0.301	0.507 ± 0.207	0.468 ± 0.218
Survival (%)	50.63 ± 19.83	77.03 ± 13.41	71.92 ± 2.44
SGR (%)	11.79 ± 1.23	10.41 ± 0.68	10.19 ± 0.20
FCR	1.83 ± 0.43	1.61 ± 0.36	1.78 ± 0.29
Final Biomass (kg)	35.68 ± 8.29	39.46 ± 8.53	35.08 ± 4.97
Prod (kg.m ⁻²)	1.13 ± 0.26	1.25 ± 0.27	1.11 ± 0.16

✓ No significant differences between treatments

Parameters	Control	0.5 mg NH_4	3.0 mg NH ₄
Initial Weight (g)	0.022 ± 0.017	0.022 ± 0.017	0.022 ± 0.017
Final Weight (g)	0.793 ± 0.301	0.507 ± 0.207	0.468 ± 0.218
Survival (%)	50.63 ± 19.83	77.03 ± 13.41	71.92 ± 2.44
SGR (%)	11.79 ± 1.23	10.41 ± 0.68	10.19 ± 0.20
FCR	1.83 ± 0.43	1.61 ± 0.36	1.78 ± 0.29
Final Biomass (kg)	35.68 ± 8.29	39.46 ± 8.53	35.08 ± 4.97
Prod (kg.m ⁻²)	1.13 ± 0.26	1.25 ± 0.27	1.11 ± 0.16

✓ No significant differences between treatments

Parameters	Control	0.5 mg NH_4	3.0 mg NH_4
Initial Weight (g)	0.022 ± 0.017	0.022 ± 0.017	0.022 ± 0.017
Final Weight (g)	0.793 ± 0.301	0.507 ± 0.207	0.468 ± 0.218
Survival (%)	50.63 ± 19.83	77.03 ± 13.41	71.92 ± 2.44
SGR (%)	11.79 ± 1.23	10.41 ± 0.68	10.19 ± 0.20
FCR	1.83 ± 0.43	1.61 ± 0.36	1.78 ± 0.29
Final Biomass (kg)	35.68 ± 8.29	39.46 ± 8.53	35.08 ± 4.97
Prod (kg.m ⁻²)	1.13 ± 0.26	1.25 ± 0.27	1.11 ± 0.16

✓ Resulting in similar productivity

CONCLUSION

✓ The addition of ammonia in the early stages
of the culture improved the biofloc formation.

✓ The addition of ammonia did not affect the zootechnical parameters.

✓ In the next step it will be tested different pre-fertilization time.

ACKNOWLEDGMENTS

darianok@gmail.com

